Positive solution to quasilinear Schrodinger equations via Orlicz space framework

نویسندگان

چکیده

This article concerns the existence of solutions for generalized quasilinear Schrodinger equation$$ -\hbox{div}(g^2(u)\nabla u)+g(u)g'(u){|\nabla u|}^2+V(x)u=f(x,u),\quad x\in\mathbb{R}^N\,. $$ We obtain a positive solution by using change variables and minimax theorem in an Orlicz space framework.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Orlicz-sobolev Space Setting for Quasilinear Elliptic Problems

In this paper we give two existence theorems for a class of elliptic problems in an Orlicz-Sobolev space setting concerning both the sublinear and the superlinear case with Neumann boundary conditions. We use the classical critical point theory with the Cerami (PS)-condition.

متن کامل

Positive decreasing solutions of quasilinear dynamic equations

We consider a quasilinear dynamic equation reducing to a half-linear equation, an Emden–Fowler equation or a Sturm–Liouville equation under some conditions. Any nontrivial solution of the quasilinear dynamic equation is eventually monotone. In other words, it can be either positive decreasing (negative increasing) or positive increasing (negative decreasing). In particular, we investigate the a...

متن کامل

Positive Solutions of Quasilinear Elliptic Equations

(1.2) { −∆pu = λa(x)|u|p−2u, u ∈ D 0 (Ω), has the least eigenvalue λ1 > 0 with a positive eigenfunction e1 and λ1 is the only eigenvalue having this property (cf. Proposition 3.1). This gives us a possibility to study the existence of an unbounded branch of positive solutions bifurcating from (λ1, 0). When Ω is bounded, the result is well-known, we refer to the survey article of Amann [2] and t...

متن کامل

Solution and stability analysis of coupled nonlinear Schrodinger equations

We consider a new type of integrable coupled nonlinear Schrodinger (CNLS)equations proposed by our self [submitted to Phys. Plasmas (2011)]. The explicitform of soliton solutions are derived using the Hirota's bilinear method.We show that the parameters in the CNLS equations only determine the regionsfor the existence of bright and dark soliton solutions. Finally, throughthe linear stability an...

متن کامل

Numerical Solution of Conservative Finite - Dimensional Stochastic Schrodinger Equations

The paper deals with the numerical solution of the nonlinear Itô stochastic differential equations (SDEs) appearing in the unravelling of quantum master equations. We first develop an exponential scheme of weak order 1 for general globally Lipschitz SDEs governed by Brownian motions. Then, we proceed to study the numerical integration of a class of locally Lipschitz SDEs. More precisely, we ada...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Differential Equations

سال: 2022

ISSN: ['1072-6691']

DOI: https://doi.org/10.58997/ejde.2022.35